Scorpion toxin peptide action at the ion channel subunit level
نویسندگان
چکیده
منابع مشابه
Scorpion toxin peptide action at the ion channel subunit level
This review categorizes functionally validated actions of defined scorpion toxin (SCTX) neuropeptides across ion channel subclasses, highlighting key trends in this rapidly evolving field. Scorpion envenomation is a common event in many tropical and subtropical countries, with neuropharmacological actions, particularly autonomic nervous system modulation, causing significant mortality. The prim...
متن کاملThe scorpion toxin and the potassium channel
The structure of a complex containing a toxin bound to a potassium ion channel has been solved for the first time, revealing how scorpions have designed toxins that can recognize and target the filter that controls the movement of potassium ions through these channels.
متن کاملMolecular Characterization of a Three-disulfide Bridges Beta-like Neurotoxin from Androctonus crassicauda Scorpion Venom
Scorpion venom is the richest source of peptide toxins with high levels of specific interactions with different ion-channel membrane proteins. The present study involved the amplification and sequencing of a 310-bp cDNA fragment encoding a beta-like neurotoxin active on sodium ion-channel from the venom glands of scorpion Androctonus crassicauda belonging to the Buthidae family using r...
متن کاملScorpion Toxin, BmP01, Induces Pain by Targeting TRPV1 Channel
The intense pain induced by scorpion sting is a frequent clinical manifestation. To date, there is no established protocol with significant efficacy to alleviate the pain induced by scorpion envenomation. One of the important reasons is that, little information on pain-inducing compound from scorpion venoms is available. Here, a pain-inducing peptide (BmP01) has been identified and characterize...
متن کاملMutations at F637 in the NMDA receptor NR2A subunit M3 domain influence agonist potency, ion channel gating and alcohol action.
BACKGROUND AND PURPOSE NMDA receptors are important molecular targets of ethanol action in the CNS. Previous studies have identified a site in membrane-associated domain 3 (M3) of the NR1 subunit and two sites in M4 of the NR2A subunit that influence alcohol action; the sites in NR2A M4 also regulate ion channel gating. The purpose of this study was to determine whether mutations at the site in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Neuropharmacology
سال: 2017
ISSN: 0028-3908
DOI: 10.1016/j.neuropharm.2016.10.004